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AbStrACt
The introduction of high-quality, useable generalized linear mixed model (GLMM) software in the mid-2000s changed the 
conversation regarding the analysis of non-normal data from designed experiments. For well over half a century, the reigning 
paradigm called for using analysis of variance (ANOVA), either assuming approximate normality of the original data or applying 
a variance-stabilizing transformation. The appearance of GLMMs creates a dilemma. The ANOVA-based analyses and GLMM-
based analyses often yield mutually contradictory results. What results should a researcher report, and how should the choice 
be justified? If GLMM-based analysis is preferred—and there is increasing evidence that this is the case—approaches to data 
analysis ingrained while learning ANOVA must be unlearned and relearned. The basic issues associated with the analysis of 
non-normal data are reviewed here, the thought processes required for GLMMs and how they differ from traditional ANOVA 
are introduced, and three examples are presented, giving an overview of GLMM-based analysis. The three examples include 
discussions of what is known to date about the relative merits of GLMM- and ANOVA-based analysis of non-normal data.
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Abbreviations: AIC, Akaike information criterion; ANOVA, analysis of 
variance; GEE, generalized estimating equation; GLM, generalized linear 
model; GLMM, generalized linear mixed model; LM, linear model; LMM, 
linear mixed model; RCBD randomized complete block design; WWFD, 
What Would Fisher Do.

Through a manure trial on potato (Solanum tuberosum 
L.), Fisher (1923) introduced ANOVA. In the following years, 
ANOVA became institutionalized as the central feature of what is 
commonly accepted as standard statistical analysis for experimental 
research data. This understanding remains firmly in place today.

Analysis of variance rests on three assumptions: independent 
observations, normally distributed data, and homogeneous 
variance, the latter meaning that the variance among experimental 
units does not change with treatment. However, data with non-
normal distributions are common in most areas of research. 
Examples include the percentage of seeds that germinate 
(binomial), weed count per plot (Poisson or negative binomial), 
time to flowering (exponential or gamma), disease rating category 
(multinomial), and proportion of leaf area affected (beta), to name 
a few. Data from emerging genomic and other “-omic” research 
often share characteristics with non-normal distributions. For all 
distributions except the normal, the variance depends on the mean. 
As a consequence, whenever the normality assumption is violated, 
the equal variance assumption must also be violated—at least, 
assuming that treatments affect the mean response. The question 
addressed here is: how should such data be analyzed?

Before 1990, this seemed to be a settled question. The 
Central Limit Theorem provided assurance that regardless 
of the distribution of the data, given a sufficient number of 

observations—read “properly designed experiment”—the 
sampling distribution of means could be assumed to be 
approximately normal. A considerable body of evidence for the 
robustness of ANOVA, summarized in an excellent overview by 
Miller (1997), accumulated during the 20th century. Standard 
variance-stabilizing transformations for common types of non-
normal data were well known, included in statistical methods 
texts, and considered standard operating procedure in many 
agricultural disciplines.

Between the early 1990s and the late 2000s, advances in 
statistical theory and methodology that had been incubating for 
decades, enabled by rapid and sustained increases in computing 
capability, combined to dramatically change the conversation. 
The advance specifically relevant to this discussion is the 
GLMM. Generalized linear mixed models extend the linear 
model theory underpinning ANOVA to accommodate data 
that may be non-normal, may have heterogeneous variance, and, 
indeed, may be correlated. Viewed through the GLMM lens, the 
pre-1990s understanding of non-normal data—still pervasive 
in the agricultural research community—is antiquated at best, 
obsolete at worst.

Standard ANOVA on untransformed data, ANOVA 
with transformations, and GLMMs yield different, often 
contradictory and incompatible, analyses and conclusions, 
raising the question of what to report. Generalized linear 
mixed models require a change in mindset. Habits of 
mind acquired learning ANOVA apply essentially intact 
to transformed data but do not necessarily help, and often 
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impede, working effectively with GLMMs. Those trained 
under the ANOVA paradigm typically find that GLMMs 
require considerable unlearning and relearning. Depending 
on the application, the GLMM learning curve can be 
steep. It is fair to ask the following: When will standard 
ANOVA give scientifically defensible, if less sophisticated, 
answers? Are transformations still relevant? When should 
the GLMM be considered essential? How does one know the 
difference? Answering these questions, as well as presenting 
an introduction to the thought processes and methodology of 
generalized linear models, is my primary objective here.

To help readers understand the paradigm shift occurring in 
applied statistics, I begin with a brief history. Fisher and Mackenzie 
(1923) published the first use of ANOVA for experimental 
data. Fisher (1925, 1935) established the template for statistics 
in agricultural research and rapidly became the template for 
experimental research in general. Yates (1940) introduced the 
recovery of interblock information—a crucial precursor to mixed 
model methodology—and was a leader in extending Fisher’s work to 
complex experiments, notably split plots. Bartlett (1947) introduced 
transformations for non-normal data within the ANOVA 
framework. Eisenhart (1947), Henderson (1953, 1963), and Harville 
(1976, 1977) did seminal work essential to modern mixed models. 
Searle (1971) and Graybill (1976) integrated matrix algebra with 
linear model theory. This, along with the development of computers 
that could be programmed by written instructions, made modern 
statistical software (e.g., SAS) possible (SAS Institute, 2012). The 
SAS PROC GLM, a comprehensive linear model package, was 
introduced in 1976 and quickly became the standard ANOVA 
and regression package at North American agricultural research 
facilities. Despite its success, the limitations of PROC GLM and 
similar software were apparent from the outset. Specifically, the 
“general” linear model theory on which these packages were based 
were ill-suited to mixed-effects models—notably multilevel, split-
plot type experiments—and non-normal data.

Nelder and Wedderburn (1972) introduced generalized linear 
models, a major departure in approaching non-normal data. 
Whereas transformations altered the data to meet ANOVA 
assumptions, Nelder and Wedderburn extended the linear model 
basis of ANOVA and regression to accommodate more plausible 
probability assumptions about the data. In 1982, the USDA-
supported University Statisticians of Southern Experiment 
Stations, the group responsible for developing SAS, initiated 
a regional project to address PROC GLM’s shortcomings. 
The project publication (University Statisticians of Southern 
Experiment Stations, 1989) along with Laird and Ware (1982) 
brought mixed model methods to the attention of larger research 
communities including agriculture. Before 1982, awareness of 
mixed models was confined to a few highly specialized applications. 
By the early 1990s, mixed model methods were mainstream. 
Liang and Zeger (1986) were similarly instrumental in expanding 
awareness and applicability of generalized linear models. In 
1992, SAS introduced PROC MIXED, which implemented 
mixed model analysis for normally distributed data, and PROC 
GENMOD, which implemented fixed-effects-only generalized 
linear models for non-normal data. Breslow and Clayton (1993) 
and Wolfinger and O’Connell (1993) published seminal studies 
integrating mixed model and generalized linear model theory and 
methods. The next decade saw intense development of GLMM 

theory and methods. At the same time, computer technology was 
undergoing explosive development.

By the mid-2000s, practical GLMM software began to 
appear. The SAS PROC GLIMMIX was introduced in 2005. 
Several GLMM packages in R—GLMPQL, GEE, LME4, 
etc.—appeared as well. This was a watershed moment for 
statistical analysis. For the first time, useable software existed to 
implement the full range of statistical models explicitly intended 
to accommodate both complex experiments (primarily a mixed 
model issue) and non-normal data (primarily a generalized 
linear model issue). The extensive development of theory and 
methodology during the previous decades became available 
to researchers in accessible form. This explains why the entire 
question of how to do statistical analysis of non-normal data from 
experimental research is now being reassessed. Statistics, like all 
other disciplines, is dynamic; it is not a fixed set of unchanging 
rules passed down from Fisher and company.

I introduce the analysis of non-normal data using GLMMs, 
focusing on examples relevant to plant and soil science. I begin by 
presenting three motivating examples to illustrate the issues. I then 
provide an introduction to GLMM basics, especially the thought 
processes required to work effectively with GLMMs, followed by 
representative “how-to” examples. These examples are necessarily 
introductory in nature and are presented at survey- rather than 
textbook-level depth. A bottom-line summary, conclusions, and 
recommendations are provided. The examples, to the extent 
possible, focus on statistical issues and not software-specific 
programming details. Programs in R and in SAS with the data 
and basic statements for implementing the examples given here are 
available in the supplemental material.

MOtIVAtING EXAMPLES
Why is ANOVA, with or without transformations, increasingly 

suspect as a tool for analyzing non-normal data, and why do 
GLMMs matter? The three examples in this section address these 
questions. Data from all three examples come from randomized 
complete block designs (RCBDs). Plant and soil scientists 
frequently use RCBDs, readers are familiar with them, and RCBDs 
illustrate many of the issues that arise in analyzing non-normal 
data. Each example has eight blocks, two treatments–generically 
called the “control” and the “test” treatment–and no missing data.

In the first example, the response variable is a count, e.g., the 
number of weeds in a plot. In the second example, the response 
variable is binomial—the number of observations with a 
characteristic of interest out of the total number of observations, 
e.g., the number of seeds that germinate out of 100 seeds per 
plot. The third example is a continuous proportion, e.g., the 
proportion of leaf area affected by a disease. Table 1 shows the 
data for these examples.

Count Example

Count data are discrete, non-negative, integer valued, and 
typically have right-skewed distributions. In classical probability 
theory, counts imply a Poisson distribution. As counts increase, 
the Poisson approximates the normal distribution—the larger 
the count, the better the approximation. Poisson variables have 
equal variance and mean. By definition, this means that Poisson 
counts violate the equal-variance assumption of ANOVA. For 
smaller counts, data analysts are often advised to use logarithmic 
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or square root transformations. However, assuming Poisson-
distributed counts is problematic for biological count data. 
Requiring the mean and variance to be equal is a rigid and 
usually unrealistic assumption. Based on biological theory and 
accumulated experience, the negative binomial provides a more 
realistic distribution. Negative binomial random variables have 
mean denoted l > 0, and variance l + fl2, where f > 0 is 
called the scale parameter. Notice that, unlike the normal, whose 
mean, denoted m, and variance, denoted s2, are distinct entities, 

the negative binomial’s variance depends on the mean and an 
additional scale term.

Table 2 shows the results of four analyses. The first is standard 
ANOVA with the count as the response variable. The second 
and third analyses use ANOVA on logarithmic and square root 
transformed counts, respectively. The logarithmic transformation 
uses the Snedecor and Cochran (1989) recommendation, 
log(count + 1). The square root transformation follows 
Schabenberger and Pierce (2002) and Kuehl (2000), who advise 
that Ö(count + 3/8) is especially suitable for small counts. 
Although not shown here, one could also use count2/3 as proposed 
by McCullagh and Nelder (1989). The fourth analysis is a GLMM 
that assumes that count has a negative binomial distribution.

The ANOVA on untransformed counts yields a p value of 
0.0981 for the test of equal treatment means—marginal evidence 
of a treatment effect, but unconvincing in an “a = 0.05” world. 
The treatment means are 7.6 and 32.0 for the control and test 
treatments, respectively. The standard error for both treatments is 
9.1, which cannot possibly be true because the variance, and hence 
the standard errors, must be a function of the mean for count data, 
regardless of whether the distribution is Poisson, negative binomial, 
or any other plausible count distribution. The 95% confidence 
interval for the control treatment has, unhelpfully, a lower bound 
of –14. The confidence interval must therefore be truncated at 

Table 1. Data for motivating examples.

Block
Count Binomial†

Continuous 
proportion

Control Test Control Test Control Test
1 1 36 98 94 0.573 0.925
2 5 109 95 36 0.044 0.835
3 21 30 93 85 0.888 0.949
4 7 48 94 88 0.008 0.941
5 2 0 99 91 0.990 0.994
6 6 2 61 82 0.409 0.958
7 0 5 84 43 0.117 0.520
8 19 26 92 71 0.926 0.975

† Number of events of interest per 100 observations.

Table 2. Summary of analyses for motivating examples.

Treatment Statistics
Standard 
ANOVA† Transformation

Generalized linear 
mixed model

Counts (count ~ negative binomial)
log(count + 1) Ö(count + 3/8)

Control mean 7.6 4.5 5.8 5.9
SE(mean) 9.1 2.6 4.4 2.7

95% confidence limits –14, 22 0.8, 16.3 –0.2, 20.6 2.0, 17.5
Treated mean 32.0 14.3 22.9 22.4

SE(mean) 9.1 7.4 8.5 9.8
95% confidence limits 10.4, 53.6 3.9, 46.7 7.1, 47.4 7.9, 63.3

Test of treatment mean difference F value 3.64 3.33 4.32 7.17
p value 0.0981 0.1107 0.0761 0.0316

Discrete proportion (successes ~ binomial)

sin–1(Öpct)
Control mean 0.90 0.92 0.93

SE(mean) 0.062 0.040 0.030
95% confidence limits 0.75, 1.04 0.81, 0.98 0.82, 0.97

Treated mean 0.74 0.76 0.78
SE(mean) 0.062 0.067 0.072

95% confidence limits 0.59, 0.88 0.61, 0.88 0.57, 0.91
Test of treatment mean difference F value 3.28 5.00 6.75

p value 0.1132 0.0605 0.0355
Continuous proportion (proportion ~ beta)

sin–1(Öpct)
Control mean 0.49 0.49 0.49

SE(mean) 0.11 0.20 0.11
95% confidence limits 0.23, 0.75 0.18, 0.80 0.26, 0.72

Treated mean 0.89 0.91 0.79
SE(mean) 0.11 0.08 0.10

95% confidence limits 0.63, 1.15 0.65, 1.00 0.48, 0.94
Test of treatment mean difference F value 10.09 10.76 3.81

p value 0.0156 0.0135 0.0919
† For counts: ANOVA directly on untransformed count data, assumes count ~ normal; for discrete proportion: ANOVA directly on pct = successes/100, assumes pct ~ 
normal; for continuous proportion: ANOVA directly on proportion, assumes proportion ~ normal.
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0, raising the question, “Do we really have 95% confidence in a 
truncated interval”? These results strongly suggest the need for 
some alternative to the standard ANOVA.

With transformed counts, the test of equal treatment means 
yield p values of 0.1107 and 0.0761 for the logarithmic and square 
root, respectively. Stroup (2013a, 2013b) reported simulations that 
consistently showed the logarithmic transformation producing, on 
average, excessively conservative tests for count data—that is, less 
than the nominal a-level likelihood of rejecting the hypothesis of 
no treatment effect, and loss of power relative to statistically sound 
alternatives, notably the GLMM.

With the logarithmic transformation, the estimated counts 
are 4.5 ± 2.6 and 14.3 ± 7.4 for the control and test treatments, 
respectively. These are distinctly lower than the estimated 
counts from ANOVA on untransformed data. Again, this is 
typical of the logarithmic transformation. With the square root 
transformation, the estimates are 5.8 ± 4.4 and 22.9 ± 8.5. These 
are also lower than the untransformed ANOVA but not as low 
as the logarithmic transformation. Both transformations reflect 
increased variance with increasing count. As a consequence, for 
lower counts, confidence intervals for the mean are narrower than 
those produced by an untransformed ANOVA; for higher counts, 
the transformations result in wider confidence intervals. However, 
the logarithmic and square root transformations yield different 
confidence bounds. The logarithmic transformation precludes 
negative lower bounds, but the square root transformation does not.

The GLMM yields a p value of 0.0316, the only “significant” 
p value among the four analyses, assuming an “a = 0.05” world. 
This obviously creates a dilemma. The estimated mean counts are 
5.9 and 22.4, with standard errors of 2.7 and 9.8. The estimated 
counts are greater than those computed from the logarithmically 
transformed ANOVA, less than the standard ANOVA, and similar 
to the square root transformation. For lower counts, the confidence 
intervals are narrower than all three ANOVA-based methods. For 
larger counts, the GLMM-based confidence interval is shifted to 
the right but about the same width as its ANOVA-based analog.

These results are for a single data set, but they are not unique. 
They accurately represent the typical pattern of differences 
among these three approaches to analysis. Analysis of variance 
on untransformed data yields upwardly biased mean count 
estimates. The logarithmic transformation yields downwardly 
biased estimates. Square root transformations and GLMM 
analysis typically give unbiased mean count estimates, but the 
square root transformation does not necessarily yield sensible 
interval estimates. All four analyses produce similar p values 
when treatment means are roughly equal, but the GLMM yields 
lower p values than ANOVA, with or without transformation, 
when treatment differences exist. In other words, all four 
methods control Type I error adequately, but GLMMs have 
more power to detect treatment differences.

Discrete Proportions—binomial Data

Discrete proportions arise from “yes–no” data—the plant is alive 
or dead, diseased or not, stalk lodging is present or it is not, the seed 
germinates or it does not. In each experimental unit, e.g., a plot, N 
observations are taken. For example, N plants are observed, and of 
these, Y show the response or characteristic of interest. Because N 
can vary among plots, most data analysts use the sample proportion, 
defined as pct = Y/N, as the response variable.

Formally, Y has a binomial distribution, written Y ? 
Binomial(N,p), where p denotes the probability that an 
observation drawn at random has the characteristic of interest. In 
multitreatment experiments, pi denotes the probability for the ith 
treatment. Analysis focuses on estimating pi for each treatment and 
testing the equality of pi among treatments. The expected value of 
the binomial random variable is Np and its variance is Np(1 – p). As 
with counts, the variance is a function of the mean; unlike either 
the normal distribution or the negative binomial distribution for 
counts, the binomial does not have a separate scale parameter. With 
the normal distribution, estimates of the mean and variance require 
distinct calculations; with the binomial, a single calculation, the 
estimate of p, determines both the mean and variance.

For large N, the normal distribution approximates the 
binomial; the approximation becomes more accurate as N 
increases. Textbooks give rules of thumb ranging from Np ³ 5 
to Np ³ 10 if P < 0.5, or N(1 – p) ³ 5 to N(1 – p) ³ 10 if p > 0.5, 
although there is no universal agreement about what qualifies 
as “large.” Even when the normal approximation is accurate, 
for multitreatment experiments, unequal pi guarantees unequal 
variance, violating a key ANOVA assumption. The standard 
variance-stabilizing transformation for binomial data is the arc 
sine square root transformation, i.e., sin–1(Öpct), also known as 
the angular transformation.

Now consider the three analyses. The p values are 0.1132, 
0.0605, and 0.0355 for ANOVA on the untransformed pct, 
ANOVA on the transformed pct, and the GLMM, respectively. 
The estimated probabilities are 0.90, 0.92, and 0.93, respectively, 
for the control treatment and 0.74, 0.76, and 0.78 for the 
test treatment. The standard errors of the mean are equal for 
ANOVA on untransformed pct, which we know cannot be 
correct because the variance must change with changing p. 
Because test statistics depend on standard errors, this also 
invalidates the untransformed ANOVA p value. Both arc sine 
transformed ANOVA and the GLMM yield standard errors that 
reflect the mean–variance relationship.

As with the first example, these analyses produce incompatible 
results. For reasons explained below, there are two plausible 
understandings of pi, called the conditional and the marginal. 
Each is appropriate for certain applications but not for others. 
Untransformed ANOVA yields estimates of the marginal pi but 
not the correct standard errors; the GLMM yields estimates of the 
conditional pi and correct standard errors. Arc sine transformed 
ANOVA does not provide estimates of either. Two issues for 
binomial data are (i) how does one decide which understanding 
of pi applies in a given situation, and (ii) if the marginal pi is 
appropriate, how does one obtain the correct estimate and 
appropriate standard errors and test statistics?

Continuous Proportions

Continuous proportions arise when a percentage is the 
response variable of interest but it does not arise from “Y out of 
N” binomial processes. Unlike normally distributed random 
variables, proportions are bounded from above, by 1, and below, 
by 0. When the mean proportion is close to 0 or 1, distributions 
tend to be skewed, whereas normality assumes a symmetric 
distribution. Processes giving rise to continuous proportions are 
best described by the beta distribution. The beta distribution has 
an expected value m, where 0 < m < 1 and variance m(1 – m)/(1 + j) 
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where j ³ 0 and is referred to as the scale parameter. Unlike the 
scale parameter of the normal distribution, s2, the scale parameter 
of the beta distribution defines the variance only partially, not 
completely. Snedecor and Cochran (1989) stated that the arc sine 
square root or angular transformation can be used for continuous 
as well as binomial proportions.

For the three analyses, the p values are 0.0156, 0.0135, and 0.0919 
for ANOVA on the untransformed pct, ANOVA on the angular 
transformed pct, and the GLMM assuming a beta distribution, 
respectively. The estimated proportions for the control treatment 
are 0.49 ± 0.11, 0.49 ± 0.20, and 0.49 ± 0.11, respectively, with 
confidence intervals (0.23,0.75), (0.18,0.80), and (0.26,0.72). For 
the test treatment, the estimates are 0.89 ± 0.11, 0.91 ± 0.08, and 
0.79 ± 0.10. The confidence interval for the test treatment mean 
obtained from untransformed ANOVA extends from 0.63 to 
1.15—effectively this means (0.63,1) because proportions cannot 
exceed 1. As with the analyses above, this raises a question about the 
true confidence level that can be legitimately attached to truncated 
intervals. For proportions close to 0.5, all three methods yield 
similar estimates of the mean, but the angular transformation’s 
confidence interval is much wider than that of the untransformed 
ANOVA and the GLMM. For proportions close to 0 or 1, 
the angular transformation shows a greater impact of changes 
in proportion on standard errors, whereas the GLMM yields 
estimated proportions that appear to be attenuated toward 0.5.

Unlike the count and binomial examples, the p values from 
ANOVA are lower—“more significant”—than the GLMM. 
Once again, however, the results are contradictory. Which 
analysis should we report?

CONtEMPOrArY MEtHODS FOr 
NON-NOrMAL DAtA—GENErALIZED 

LINEAr MIXED MODELS
Analysis begins with a statistical model, a description of the 

impact of experimental factors and random variation on the 
observed response. For designed experiments, the statistical 
model and the ANOVA table are intimately linked. The 
ANOVA table is a good place to start to understand GLMMs, 
how they differ from traditional ANOVA models, and how to 
set up and work with GLMMs.

Stroup (2013a) introduced an exercise called “What Would 
Fisher Do?” (WWFD) to help students and data analysts work 
through the steps leading from a description of the design to the 
ANOVA table to the model. The procedure was based on Fisher’s 
comments following Yates (1935). Fisher said that any experiment 
could be described in terms of its “topographical” and “treatment” 
components, the former being the physical elements such as blocks 
or experimental units—what Federer (1955) and later Milliken and 
Johnson (2009) would call the “experiment design.” By writing an 
ANOVA for the topographical design, another for the treatment 

design, then integrating them, Fisher suggested that the appropriate 
analysis would then be apparent. Stroup’s WWFD adapted 
Fisher’s thought process by showing how the integrated ANOVA is 
translated into a GLMM.

To illustrate, consider the RCBD from the examples above. The 
design had eight blocks, with two experimental units per block. 
The two treatments were randomly assigned to experimental units, 
one unit per block per treatment. Thus the sources of variation for 
the topographical ANOVA are blocks and units within blocks; the 
sources of variation for the treatment ANOVA are treatment and 
whatever is left, a term Fisher called parallels. Table 3 shows the 
topographical, treatment, and combined ANOVA tables.

The placement of the rows in the topographic and treatment 
ANOVAs is important. Sources of variation in the treatment 
ANOVA are always placed in the line immediately above the line 
in the topographical ANOVA corresponding to the unit to which 
they were applied. Here, “treatment” was randomly assigned to 
“unit(block).” Then one “slides” the sources of variation to the 
right to obtain the combined ANOVA. Notice the name of the 
source of variation in the last line of the combined ANOVA: 
unit(block)|treatment. Read this as “unit within block after 
accounting for treatment.” Also notice that its seven df result 
from the original df for experimental units in the topographical 
ANOVA minus the df of the treatments applied to those units. 
While these line placement and df protocols seem obvious with 
a simple, single-factor design such as the RCBD, disciplined 
application of WWFD rules greatly facilitates defining sensible 
models for arbitrarily complex designs.

Traditionally, this leads to an equation read as “observation = 
overall mean + treatment + block + error” and written in statistical 
notation as yij = m + ti + bj + eij, where yij denotes the 
observation on the ith treatment and jth block, and each line 
in the combined ANOVA implies a corresponding term on the 
right-hand side: “block” implies bj; “treatment” implies ti; and 
“unit(block)|treatment” implies eij. Statistical texts commonly 
refer to eij as the residual or random error term, assumed to be 
independent and normally distributed, with mean 0 and variance 
s2. This equation provides the standard justification for using 
the tools of ANOVA—sums of squares, mean squares, F tests, 
etc.—provided, that is, that the normality assumption is plausible. 
Without normality, however, as we saw above, we have a problem.

The GLMM takes a different approach. Rather than a single 
model equation, the GLMM defines two terms: the linear predictor 
and the distribution of the observations at the unit level, i.e., at the 
level where measurements are taken. For example, for normally 
distributed data, write the distribution of the observations as yij ? 
N(mij,s

2), read “the observations (yij) have a normal distribution 
with mean mij and variance s2.” Write the linear predictor as mij = 
m + ti + bj. Notice that the linear predictor describes how the 
observation’s mean is affected by the sources of variation, block, 

Table 3. “What Would Fisher Do” ANOVAs for randomized complete block design.

Topographical Treatment Combined
Source df Source df Source df
Block 7 Block 7

Treatment 1 Treatment 1

Unit(block) 8 “Parallels” 14
Unit(block)|treatment
(“residual” or block ´ 

treatment)
8 – 1 = 7

Total 15 Total 15 Total 15
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and treatment, listed in the ANOVA. This is called the probability 
distribution formulation of the model; the traditional approach in 
the previous paragraph is called the model equation formulation.

For normally distributed data, these two formulations are simply 
different ways of expressing the same thing. Readers may ask, “If it 
doesn’t matter, why add a new complication?” The answer: because 
the probability distribution approach accommodates non-normal 
data competently, whereas the model equation does not.

To see this, we need a brief excursion into probability and 
estimation theory. The following is intended as a “what consumers 
need to know” guide. For the rigorous, “gloves off” presentation 
of GLMM theory, see Stroup (2013a). For most agronomists, full 
immersion in GLMM theory is unrealistic and unnecessary. What 
they do need is a general understanding of the main issues and how 
contemporary statistical science approaches them. Some GLMM 
intuition is essential to appropriately analyze non-normal data and 
interpret the results.

To illustrate, consider the binomial example from above. The 
observations made on each experimental unit—hereafter referred 
to as the ijth unit: the ith treatment in the jth block—are assumed 
to have a binomial distribution with Nij “yes–no” observations (e.g., 
seeds that either do or do not germinate) and probability pij of a 
“yes” response (e.g., the seed germinates) on any given observation. 
In the binomial example above, Nij = 100 for all experimental 
units, allowing us to replace Nij with N. Thus the mean for the 
ijth unit is Npij and the variance is Npij(1 – pij). Formally, the 
distribution is denoted Binomial(N,pij). Figure 1 shows an example 
binomial distribution with pij = 0.9. Figure 1 also shows the normal 
distribution with mean Npij = 100 ´ 0.9 = 90 and standard 
deviation [100 ´ 0.9 ´ (1 – 0.9)]1/2 = 3 superimposed.

Inspection of Fig. 1 reveals why, with large N, the normal 
approximation to the binomial reassures and tempts data 
analysts. However, the reassurance is only apparent. Life is not 
so simple. The WWFD ANOVA tells us that we have two 
sources of variation, block and treatment, that affect pij. First 
consider the block. Blocking is a design strategy to ensure that 
units within blocks are as similar as possible. Variability among 
blocks is expected; variability within blocks is minimized to the 
extent possible. In addition, there is nothing special about the 
blocks actually used in an experiment. Any set of blocks with 
similar characteristics will do. In other words, we assume that 

the blocks are representative of blocks we could have used. Taken 
together, representative and variability strongly suggest sample 
and probability distribution. Typically, variation among blocks is 
assumed to follow a normal distribution.

What happens when pij is affected by a block effect that 
has a normal distribution? Figure 2 shows the distribution of 
the resulting observations. This is the distribution of the data 
that we actually observe. It has two features that are crucial to 
understanding the logic of analyzing non-normal data.

First, even though the normal approximation is convincing 
for the binomial distribution at the ijth unit level, and the 
distribution of the block effects is normal by assumption, the 
resulting distribution of the observations is not even remotely 
normal. In this case it is strongly left-skewed. In general, for pij > 
0.5, the distribution of the observations will be left-skewed; for 
pij < 0.5, the distribution will be right-skewed. The skewness 
increases as the probability approaches 0 or 1. The observations 
are symmetrically distributed only when pij = 0.5 for all 
treatments—not probable in practice.

The second important feature of the distribution shown in Fig. 2 
is that its mean is 86.6. Consequently, the mean sample proportion 
is 0.866. This is important because standard ANOVA—the model 
equation approach defined above—yields an unbiased estimate of 
the mean of the distribution of the observations. If your goal is to 
estimate the binomial probability, pij = 0.9, you will not get it using 
ANOVA. Analysis of variance will give you an unbiased estimate of 
0.866. A similar set of illustrations could be developed for the count 
data above or the continuous proportion data.

Formally, there are three distributions relevant to the analysis of 
experimental data. Two of them follow from sources of variation 
identified by the WWFD ANOVA exercise: the distribution at 
the unit level (the binomial distribution in our example) and the 
distribution of effects that are considered “representative” and 
having “variation” (blocks in our example). The latter are known 
as random effects in statistical modeling. We refer to the latter 
as the distribution of the random effects and the former as the 
distribution of the observations conditional on the random effects. 
In formal statistical notation, write the block distribution as bj ? 
NI(0,sB

2), read “block effects are normally and independently 
distributed with mean 0 and variance sB

2.” Write the conditional 
distribution of unit-level observations as yij|bj ? Binomial(N,pij), 

Fig. 1. Binomial probability distribution, N = 100, p = 0.9, with normal 
distribution superimposed.

Fig. 2. Marginal distribution = distribution of observed number of 
successes from randomized complete block designs with binomial data.
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read “the distribution of the observations, conditional on the 
observation being in the jth block, is Binomial with N yes–no 
observations per experimental unit and probability pij of a ‘yes’ 
response for any given observation.”

The block and unit-given-block distributions follow from 
the sources of variation listed in the ANOVA; however, neither 
can be observed directly. The only distribution we can actually 
observe is called the marginal distribution of the observations. 
The important thing for users to remember is that when we say 
we have “binomial” data, we are referring to the distribution of 
the observations conditional on the ijth unit. The distribution 
of the observed data, however—the marginal distribution—is 
emphatically not binomial.

The reason this is a non-issue with normally distributed data 
is that if the random-effects distribution and the unit-given-
random-effects distribution are normal, the resulting marginal 
distribution is normal as well. This only happens, however, when 
the unit-of-observation level distribution, that is, the distribution 
of yij|bj, is normal. For all other data—binomial, counts, 
continuous proportions, time-to-event, etc.—the marginal 
distribution of the observed data is quite different. Our usual 
intuitions can betray and mislead.

The fundamental problem of analyzing non-normal data, 
especially with the designs most commonly used in agronomic 
research, is that what we want to estimate or test—e.g., 
treatment effects on pij for binomial data—involves parameters 
of distributions we cannot directly observe. What GLMM 
analysis does that standard ANOVA and regression cannot do 
is provide a way to extract the information we want—about the 
effects listed from the WWFD ANOVA exercise— from the 
observations we have, where these effects are camouflaged in a 
complex marginal distribution.

This ends the first excursion into probability. Returning to the 
task of writing a GLMM for binomial data from a randomized 
block design, we need to specify linear predictor and probability 
distributions. The distributions we have already specified: bj ? 
NI(0,sB

2) for blocks, yij|bj ? Binomial(N,pij) for the observations 
conditional on the blocks. Just as for normally distributed data, the 
linear predictor must account for treatment and block. A logical 
candidate is hij = h + ti + bj. The form is similar to its counterpart 
for normal data, but there are small but important differences. The 
left-hand side of the equation is not mij, and because hij is not the 
mean, we also replace m (the overall mean) by h (the intercept). We 
use hij and not the mean because, with non-normal data, we get 
better accuracy from analyses in which the treatment and block 
affect the mean indirectly, not as a direct additive equation.

To see why, we need to make another brief detour into 
probability. The probability of getting yij “yes” out of N observations 
is given by the formula

( )1 ijij
N yy

ij ij
ij

N
p p

y
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This is called the binomial distribution function. Estimation 
theory uses the natural logarithm of the distribution, called the log 
likelihood. The binomial log likelihood is
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The term yijlog[pij/(1 – pij)] is particularly important: in the log 
likelihood, whatever is multiplied by yij is called the natural (or 
canonical) parameter. The natural parameter is always a function 
of the mean. For the binomial, the mean is Npij and the natural 
parameter is log[pij/(1 – pij)]. In categorical data, log[pij/(1 – pij)] is 
also called the log odds. In modeling theory, it is called the logit.

Why is this important? Without belaboring the underlying 
theory, the natural parameter is a better candidate for regression 
and ANOVA-like models that the mean itself. Following this 
idea, we write the linear predictor as hij = log[pij/(1 – pij)] = h + 
ti + bj. In generalized linear model terminology, hij is called the 
link function. It is the function that “links” the mean to the linear 
predictor. The inverse link expresses the mean in terms of the linear 
predictor. For the logit, the inverse link is pij = 1/[1 + exp(–hij)].

Note that the link function does not have to be the natural 
parameter. In some cases, other functions of the mean make more 
sense. Nonetheless, the natural parameter is a good way to think 
about the logic of the link function and the linear predictor. Also, 
more often than not, the natural parameter does serve as the link 
function. See Table 4 for a list of commonly used link functions for 
distributions of interest in the plant and related sciences.

To summarize, full specification of the linear model requires, at a 
minimum, three elements:
•	 the unit-level distribution
•	 the linear predictor
•	 the link function
If the linear predictor contains random effects, then a fourth 

element, the distribution of the random model effects—or 
distributions if there is more than one random effect—must be 
specified. In this case, the unit-level distribution is understood 
as the conditional distribution of the observations given the 
random effects.

Table 4. Mean, variance, and usual link function for common distributions.

Distribution Mean Variance Link

Normal m s2 m (identity)

Negative binomial l l + fl2 log(l)

Poisson l l log(l)

Binomial proportion p p(1 – p)/N logit = log[p/(1 – p)]† probit = F–1(p) 

Beta m m(1 – m)/(1 + j) log[m/(1 – m)]

Exponential m m2 log(m)‡

Gamma m m/j log(m)‡
† Natural parameter is logit.
‡ Natural parameter is 1/m but rarely used as link function; log is a better choice.
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When the unit-level distribution is normal, the link function 
is often not mentioned because it is equal to the unit-level mean. 
This matters to agronomic researchers mainly when describing the 
statistical analysis used, for example in the Materials and Methods 
section of a thesis or journal article. If the data are normal, the 
identity link is understood; if the data are non-normal, the link 
should be identified.

In contemporary statistical terminology, any model so specified 
is technically a GLMM; however, linear models are usually referred 
to by the following acronyms:
•	 LM: linear model—unit-level distribution is normal; fixed-

effect-only model, that is, no random model effects.
•	 LMM: linear mixed model—unit-level-given-random-effects 

distribution is normal; linear predictor contains random model 
effects. Blocked designs where block effects are considered 
random (see discussion above) and all designs with split-plot 
features require random model effects; all repeated measures in 
time or space require mixed model methodology.

•	 GLM: generalized linear model—unit-level distribution is 
non-normal; fixed-effects-only linear predictor.

•	 GLMM: generalized linear mixed model—unit-level-given-
random-effects distribution is non-normal; linear predictor 
contains random effects.

Table 5 summarizes response variables by model type 
combinations common in plant and soil science research. This table 
can be used to help organize thinking about aligning design and 
data to an appropriate model.

Before moving on, a comment about the acronym GLM is in 
order, because it is guaranteed to confuse researchers raised on 
ANOVA via SAS. From its introduction in 1976 through the 
mid-1990s, PROC GLM was the preeminent SAS procedure 
for analyzing experimental data. At the time it was introduced, 
GLM meant “general linear model.” Don’t confuse general and 
generalized—they have very different meanings in statistical 
science. The general linear model is “general” in the sense that it can 
accommodate any linear predictor, provided the data are normally 
distributed and all model effects are fixed. By 1976 standards, 
that was “general.” By 2014 standards it is not. The general linear 
model cannot fully accommodate random model effects nor can it 
accommodate non-normal data (except via transformations, which 
do not accommodate non-normal data so much as they attempt 
to force data to act normally instead). The contemporary acronym 
for the general linear model is LM. The SAS PROC GLM can 
compute the analysis of LMs but not GLMs.

In SAS, PROC MIXED is specifically intended for LMMs. 
Many researchers still use PROC GLM for certain mixed models 
but this is emphatically discouraged—see Littell et al. (2006) for 
a full treatment of this subject. The GLMM integrates mixed and 
generalized linear models. The PROC GLIMMIX procedure was 
developed for GLMMs. Notice that all linear models are special 
cases of the GLMM: the GLM is a GLMM with no random model 
effects; the LMM is a GLMM with normally distributed data; the 
LM is a GLMM with no random effects and normally distributed 
data. For this reason, software intended to implement GLMMs 
can implement any linear model. The PROC GLIMMIX can 
compute simple ANOVA—using essentially the same syntax and 
yielding the same statistics relevant to statistical inference. For most 
data analyses, PROC GLIMMIX has effectively replaced PROCs 
GLM, MIXED, and GENMOD. On the other hand, PROC 
GLM cannot implement LMMs, GLMs, or GLMMs.

Generalized linear models and GLMMs raise three crucial issues 
that are likely to be unfamiliar to those new to generalized models. 
These are
•	 the model scale vs. data scale
•	 what terms to include in the linear predictor and what terms 

must not be included
•	 conditional vs. marginal inference and, as a consequence, 

conditional vs. marginal models
These are discussed briefly below. They are developed in greater 

detail and with more relevant context in the examples below. 
Interested readers are referred to Gbur et al. (2012) and Stroup 
(2013a) for more in-depth discussions of these issues.

Model vs. Data Scale

For GLMs and GLMMs, all statistical analysis occurs in terms of 
the link function. For example, with the binomial example above, 
analysis is in terms of the logit. The test of equal treatments implies 
testing for equal ti and hence equal logits. Ask for the “mean” and 
you get the mean logit. This is fine for testing—tests using GLMMs 
are demonstrably more accurate than standard ANOVA, with 
or without transformation—but the mean logit or the difference 
between two mean logits is not the stuff of understandable reports. 
Instead, an understandable report of the results ought to include 
estimates of the probabilities, pi, for each treatment, obtained using 
the inverse link. Estimates of the mean logit are examples of the 
link or model scale. The estimate converted to a probability is an 
example of the data scale.

Notice that with normally distributed data, there is no data 
scale–model scale distinction. The treatment mean estimate 

Table 5. Linear model (LM), linear mixed model (LMM), generalized linear model (GLM), and generalized linear mixed model (GLLM) classified by com-
mon response variable types in conjunction with effects needed in the model.

Response type
Example response 

variables Distribution

Fixed effects Mixed effects

Categorical Continuous
Repeated measures in time 

or space
Random block, split 

plot, etc.
Continuous 
symmetric height, weight, yield normal LM LMM

Count number of weeds, 
insects

negative binomial, 
Poisson

GLM GLMM

Discrete 
proportion

Y “yes” out of N 
observations

binomial

Continuous 
proportion

leaf area percentage beta

Continuous, 
nonzero, skewed

time to event exponential, 
gamma
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computed in terms of the model is in fact an estimate of the ith 
treatment mean on the data scale. This is a consequence of the link 
function for normally distributed data, hij = mij, called the identity 
link. Until Nelder and Wedderburn (1972) introduced GLMs, 
there was no reason for the data–model scale distinction to occur 
to anyone. Because statistical methods textbooks still focus on 
traditional ANOVA, data–model scale issues have yet to come to 
their attention.

What to Include in the Linear Predictor

For normally distributed data, the hard part of writing the 
model is getting the WWFD ANOVA right. The model equation 
follows. The linear predictor is defined by each line of the combined 
ANOVA except the last.

With non-normal data, writing the linear predictor requires 
more care. One must consider the last line of the combined 
ANOVA and the variance implied by the response variable’s 
distribution. To illustrate, consider the randomized block example 
with normal data as opposed to the same design with binomial 
data. For normally distributed data, there is no ambiguity about the 
linear predictor. It consists of an intercept plus a term for each line 
in the ANOVA except the last, e.g., m + ti + bj for the randomized 
block design. We used these terms to estimate the means, mij. The 
last line of the ANOVA gives us mean square(residual), which we 
use as the estimate of the variance, s2.

What if we borrow the normal-data linear predictor and use it 
for binomial data? Using the linear predictor h + ti + bj means 
not using any information from the last line of the ANOVA. This 
may be a problem. Why? It is reasonable to assume that the ijth 
experimental unit has unique characteristics not fully explained 
by the treatment and block effects alone. In the normal case, 
experimental unit uniqueness is implicit: eij appears in the model 
equation to account for it and s2 measures it. But, unlike the 
normal, the binomial does not have a separate variance term. Once 
you estimate pij you automatically have the mean and the variance. 
If the binomial model merely borrows the linear predictor from 
the normal model, experimental unit uniqueness is ignored. This 
results in the model accounting for less variation than is actually 
present in the data. This is one form of overdispersion, the modeling 
term for the observed variance exceeding the variance expected in 
theory. Overdispersion results in downward-biased standard errors, 
meaning that confidence intervals are too narrow, and upward-
biased test statistics, meaning that Type I error rates are inflated, 
often severely.

The solution to this problem lies in accurately understanding the 
WWFD combined ANOVA. How this plays out depends on the 
specifics of the distribution. Examples below will show how this 
issue is dealt with in the two cases where the agronomist is most 
likely to see it—with binomial and count data.

Conditional and Marginal

Above, we explored the distinction between the conditional and 
marginal distribution of the data. In each of the three motivating 
examples, ANOVA on the untransformed data produced treatment 
mean estimates that were different from those produced by the 
corresponding GLMM. The binomial example referred to two 
different understandings of pi, the conditional and marginal. While 
not explicitly mentioned in the count and continuous proportion 
examples, these distinctions were also present. The distinction 

between conditional and marginal inference exists for all non-
normal data. Working effectively with non-normal data requires 
understanding the difference.

The conditional, or GLMM, estimate and the marginal estimate 
address two potentially useful, but distinctly different, questions. 
In the binomial case, the GLMM estimate says, “If I take an 
average member of the population—which means a member of 
the population whose block effect bj = 0—what is the estimated 
binomial probability?” The marginal mean addresses the question, 
“If I average across all the members of the population, what is the 
mean proportion?” Because the marginal distribution is highly 
skewed, another way to think of this is to consider the mean and 
median. Because the distribution of block effects is symmetric, an 
estimate of the probability at bj = 0 is closely related to the median. 
Household income provides a useful analogy because income 
data tend to be strongly right-skewed: median income accurately 
characterizes a typical household; mean income does not provide 
a useful characterization of a typical household, but it does 
accurately measure the amount of money in the overall economy. 
Conditional inference: median of a skewed distribution. Marginal 
inference: mean of a skewed distribution. Which is right? It 
depends. What is the question?

Because the normal distribution is symmetric, the conditional–
marginal issue does not arise with LMs and LMMs. With GLMs 
and GLMMs, researchers must decide which understanding of 
“expected value” best addresses a study’s objectives.

tHrEE EXAMPLES OF GENErALIZED 
LINEAr MIXED MODEL IMPLEMENtAtION 

AND INtErPrEtAtION
The purpose of the three examples presented here is to illustrate 

the main issues researchers will encounter using GLMMs to 
analyze and interpret non-normally distributed data. This will 
necessarily be a survey of main issues; it cannot be exhaustive, 
nor can it go into great depth. Readers seeking greater breadth 
and detail are referred to texts such as Gbur et al. (2012), Stroup 
(2013a), and Faraday (2006). Additional references are noted as 
they arise for specialized applications suggested by these examples.

Specific software commands are avoided where possible. The SAS 
and R statements needed to implement the examples are available 
in the supplemental material. Each example concludes with a brief 
characterization of about how the GLMMs presented compare 
with common transformations with regard to Type I error control, 
power, and accuracy of estimates of the mean.

Example 1: randomized Complete 
block Design, binomial Data

This example uses the same data as the binomial example 
discussed above. The design is a randomized complete block with 
eight blocks and two treatments. At each experimental unit, that is, 
at each block ´ treatment combination, 100 observations are made 
and the response of interest is the number out of those 100 that 
have a characteristic of interest. For example, how many seeds out of 
100 germinated?

From the discussion above, the standard linear predictor for 
the RCBD is h + ti + bj. Because there were 100 observations per 
experimental unit, even if the probability of a seed germinating is 
0.9, the minimum criterion for using the normal approximation to 
the binomial given in standard statistical methods textbooks, that 
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N(1 – p) exceed 5, or even 10, is easily satisfied. Figure 1 visually 
underscores this point. Hence the temptation to compute ANOVA 
with the sample proportion, pij = yij/N. However, we saw above the 
problems with that approach that were not apparent at the time 
standard statistical methods textbooks were written.

From the discussion above, the GLM for the RCBD requires
•	 the distribution of the observations: if block effects are 

considered random—strongly recommended, especially 
when working with non-normal data—then the conditional 
distribution of the observations given the blocks must be 
specified: yij|bj ? Binomial(N,pij), where N = 100 is the 
number of observations per experimental unit and pij is the 
probability of the outcome of interest (e.g., seed germinates) 
for the ith treatment and jth block

•	 the distribution of block effects if they are considered random: 
the standard assumption is that block effects are normally and 
independently distributed with mean 0 and variance sB

2; in 
statistical notation, bj ? NI(0,sB

2).
•	 the link function: hij = logit(pij) = log[pij/(1 – pij)] 
•	 the linear predictor: hij = h + ti + bj 
When implemented, this yields an F value for treatment of 68.76 

with a p value <0.0001. Recall that the p values from the example 
discussed above ranged from 0.0355 to 0.1132. This discrepancy is 
an example of overdispersion-induced test-statistic inflation. From 
the discussion concerning what to include in the linear predictor, 
the model that should be fitted is a modified GLMM adding an 
effect corresponding to the “unit(block)|treatment” line of the 
WWFD ANOVA. The amended model:
•	 linear predictor: hij = h + ti + bj + uij, where uij is the random 

unit-level effect; with blocked designs, uij is mathematically 
equivalent to the block ´ treatment interaction; the linear 
predictor can be written equivalently as hij = h + ti + bj + (bt)ij

•	 random effect distribution: whether referred to as the unit-level 
effect or block-treatment effect, its distribution is assumed to 
be normal, independent, with mean 0 and variance sU

2 (or, if 
you prefer, sBT

2)
•	 distribution of the observations: yij|bj,uij ? Binomial(N,pij), 

which is simply the conditional distribution from above with 
the unit-level random effect added

This yields the p value 0.0355 and the estimates of the 
probabilities in Table 2 for the GLMM. In addition to 
overdispersion, this example also illustrates the hazard of 
“borrowing” the linear predictor intact from standard analysis and 
using it for non-normal data. Users must be aware of the variance 
of their response variable’s distribution in conjunction with the 
interpretation of the last line of the WWFD ANOVA.

We noted above that there are two ways of understanding 
treatment means with non-normal data: the conditional and 
the marginal. In this example, the conditional mean is the 
ith treatment probability, pi, for an average member of the 
population; the marginal mean is the average of the probabilities 
across all members of the population. Use the conditional mean 
if the research objectives focus on what would be expected for 
a typical producer, typical farm, etc. The above GLMM gives 
these estimates, as well as accurate test statistics, standard errors, 
confidence intervals, etc.

However, what if the marginal mean is more appropriate 
for a given research objective? We saw above that the normal 
approximation of the binomial, implemented with standard 

ANOVA, yields unbiased estimates of the marginal means but 
not the correct standard errors. As a consequence, ANOVA 
produces inaccurate confidence intervals and invalid test statistics. 
Transformations do not help. Stroup (2013b) showed that, if 
anything, the angular transformation is even more inaccurate 
than the untransformed ANOVA—and it lacks power to test for 
treatment differences. For binomial data, ANOVA with or without 
transformation should be considered unacceptable for scientific 
publication. If the marginal mean best addresses the research 
objectives, the correct approach requires an alternative formulation 
of the GLMM.

The alternative GLMM needed for marginal means begins 
with the GLMM we just considered, whose linear predictor was 
hij = h + ti + bj + uij with random block and unit-level effects. The 
variance of the linear predictor is sB

2 + sU
2  and the correlation 

between the pair of unit effects within the same block is r = sB
2/

(sB
2 + sU

2). In the early days of GLMs, when computers could 
handle GLMs but not GLMMs, these variance and covariance 
results provided an insight that allowed GLM software to handle 
some GLMMs. Zeger et al. (1988) presented a method that 
removed the random effects from the linear predictor, making 
the model a GLM instead of a GLMM. To account for the unit 
and block effects, they created a structure they called a working 
correlation. Instead of requiring the entire distribution to be 
specified, they showed that it was sufficient merely to identify the 
mean, the variance, and the correlation structure to implement a 
GLM analysis. Instead of a distribution and likelihood, as in our 
brief excursion into probability and estimation theory above, they 
now had what statistical theorists call a quasi-likelihood. Analysis 
with quasi-likelihood and a working correlation can be computed 
using what Zeger et al. (1988) called generalized estimating 
equations (GEEs). Models defined this way are referred to as GEE 
models. Both the R package GEE and SAS PROC GLIMMIX can 
implement GEE models.

The GEE provides valid analysis for marginal means. Because 
it focuses on the marginal mean, it is also referred to as a marginal 
model. For this example, its elements are:
•	 linear predictor: hij = h + ti 
•	 quasi-likelihood (replaces distribution): yij has a Binomial(N,p) 

quasi-likelihood with variance fWpij(1 – pij) and covariance 
fWrW[p0jp1j(1 – p0j)(1 – p1j)]1/2, where the W subscripts in 
fW and rW denote “working”; fW assumes the role that sB

2 
+ sU

2  plays in the GLMM, while rW replaces the interclass 
correlation r = sB

2/(sB
2 + sU

2)
•	 link function: hij = logit(pij) = log[pij/(1 – pij)] 
Another model that targets the marginal mean is a GLMM 

using the beta distribution. This approach is technically valid only 
when all experimental units have the same number of yes–no 
observations, that is when Nij = N. If Nij vary but are more or less 
equal, assuming a beta distribution gives acceptable results. The 
model is:
•	 distribution: yij|bi ? Binomial(N,pij) 
•	 pij ? Beta(pij,j) 
•	 link function: logit(pij) 
•	 use response variable pctij = yij/N (software note: using 

pct is not the same as specifying binomial y/N; SAS and R 
have different conventions for this and it is important to 
get them right)
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Generalized estimating equation analysis of the data in this 
example yields a p value of 0.1132 and estimates of the treatment 
probabilities of 0.90 ± 0.05 and 0.74 ± 0.07 for the control and test 
treatments, respectively. The beta model yields a p value of 0.0713 
and estimated treatment probabilities of 0.88 ± 0.04 and 0.74 ± 
0.06. The GEE p value and probability estimates are identical to the 
standard ANOVA using the normal approximation, but, unlike 
ANOVA, the GEE standard errors reflect the mean–variance 
relationship of the binomial. The beta shows a lower p value and 
slightly different treatment mean estimates.

Stroup (2013b) found that the beta GLMM yielded the most 
robust combination of Type I error control, power for detecting 
treatment differences, and accurate confidence interval coverage. 
For the GEE, power was up to 10% lower and confidence 
interval coverage was less accurate. Assuming equal N for all 
experimental units, the beta GLMM is the preferred method 
if the marginal mean is the appropriate target. For unequal 
N, use the GEE. Either way, these are the appropriate ways to 
analyze binomial data when the marginal mean is the target, 
that is, when the research question is, “If I average across all the 
members of the population, what is the mean proportion and 
how do these proportions differ by treatment?”

Example 2: Split-Plot Experiment, Count Data

The split plot is arguably the most common design structure 
in plant and soil science research. Such experiments involve two 
or more treatment factors. Typically, large units called whole plots 
are grouped in blocks. Levels of one factor, called the whole-plot 
factor, are randomly assigned to whole plots. Each whole plot is 
divided into smaller units, called split plots. Levels of the second 
factor are randomly assigned to split-plot units within each 
whole plot. In this example, there are six blocks, a whole-plot 
factor with two levels, referred to here as A1 and A2, and a split-
plot factor with two levels, referred to as B1 and B2. While the 
ANOVA structure is undoubtedly familiar to readers, reviewing 
the WWFD ANOVA process makes it easier to understand 
modeling options for non-normal data and to distinguish those 
that make sense from those that do not.

Recall that WWFD involves describing the topographical 
structure (experiment design), the treatment structure, and then 
combining them. In the split plot, the experiment design consists of 
blocks, whole-plot units, and split-plot units; the treatment design is 
composed of Factor A (whole plot) and Factor B (split plot). Table 6 
summarizes the WWFD process.

The textbook model equation for this ANOVA is yijk = m + 
ai + bj + (ab)ij + rk + wik + sijk, where a and b refer to treatment 

(Factors A and B) effects, r refers to block effects (r is used here 
instead of b to avoid confusion with b), w refers to whole-plot 
effects, and s refers to split-plot effects. Translating the model 
equation to a linear predictor yields hijk = h + ai + bj + (ab)ij + 
rk + wik. Assuming normally distributed data means assuming 
that the observations, given the design structure, have a normal 
distribution—in statistical notation, yijk|rk,wik ? NI(mijk,sS

2). 
Because observations are taken at the split-plot level, conditional 
on the design effects, they have variance associated with the split 
plot. Block and whole-plot effects are also assumed to contribute 
variation: rk ? NI(0,sR

2) and wik ? NI(0,sW
2). The model uses 

the linear predictor, hijk, to estimate the means of the observations, 
mijk, and all inference follows from there.

All of this is familiar to any plant or soil scientist who has 
analyzed a split plot. How literally does it adapt to count data? 
Classical probability theory assumes that counts have a Poisson 
distribution. Borrowing the linear predictor from the ANOVA-
based model equation and using the canonical parameter as the link 
function gives a preliminary GLMM for the split-plot experiment 
with count data:
•	 distribution: yijk|rk,wik ? Poisson(lijk) 
•	 link function: hijk = log(lijk) 
•	 linear predictor: hijk = h + ai + bj + (ab)ij + rk + wik
•	 distribution of block and whole-plot effects: as given above
I refer to this as the naive Poisson model. Recall that this is 

exactly the strategy used to construct the preliminary model for 
the randomized block with binomial data in Example 1, and it 
proved to be inadequate. For the same reasons, this model is likely 
to be inadequate: like the binomial, the Poisson is a one-parameter 
distribution and hence the model needs some provision for 
accounting for unit-level—in this case the split-plot unit level—
variation. In the binomial case, the last line of the ANOVA was 
restored to the linear predictor.

One could do the same thing here. The revised model would use 
the same distribution and link, but the linear predictor would be 
hijk = h + ai + bj + (ab)ij + rk + wik + sijk. An alternative—and 
preferable—approach is to leave the linear predictor intact but 
change the assumed distribution to negative binomial, that is 
yijk|rk,wik ? NB(lijk,f). Assuming a negative binomial actually 
includes a split-plot unit effect but with a different distribution.

Aside: For those with a probability background, a helpful way 
to think of the negative binomial model is as follows. Assume 
the conditional distribution of the observations given the 
random block, whole-plot, and split-plot effects is yijk|rk,wik,uijk 
? Poisson(lijkuijk), where uijk ? Gamma(1/f,f). The resulting 
distribution of yijk|rk,wik is NB(lijk,f). The link function is 

Table 6. “What Would Fisher Do” ANOVAs for a split-plot experiment with a blocked whole plot.

Topographical Treatment Combined

Source df Source df Source df
Block 5 Block 5

A 1 A 1
Whole plot(block) 6 Whole plot|A

(whole plot error or block ´ A)
6 – 1 = 5

B 1 B 1

A ´ B 1 A ´ B 1

Split-plot unit (whole plot) 12 “Parallels” 20 Split-plot unit|B
(“residual” or block ´ A ´ B)

12 – 2 = 10

Total 23 Total 23 Total 23
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log(lijkuijk) = log(lijk) + log(uijk). In other words, log(uijk) in the 
negative binomial model replaces sijk in the Poisson model. Both 
account for split-plot-level effects.

Why the negative binomial model and not the Poisson? The 
probability theory underlying the negative binomial is consistent 
with biological theory of how counts develop in field situations—at 
least more so than the theory underlying the Poisson. Moreover, 
studies with biological counts generally confirm that the negative 
binomial does provide the more accurate characterization of the 
observed variation.

Why include all this seemingly mathematical minutiae here? 
Because it illustrates that the ANOVA structure Fisher devised 
remains as relevant as ever as a basis for analyzing experimental 
data, but slavishly attaching ANOVA recipes tied to normal theory 
when the data are clearly non-normal will not do. The ANOVA 
tells us what sources of variation have probability distributions, 
but it does not say that those distributions have to be normal. Clear 
thinking about the experimental context is essential.

Figure 3 shows a plot of the treatment combination means. The 
plot suggests negligible A ´ B interaction, negligible main effect 
of B, but a noticeable main effect of A. Obviously, whether these 
effects are statistically significant or not depends on inferential 
statistics from a valid statistical model.

The naive Poisson model with linear predictor borrowed from 
textbook split-plot ANOVA yields the following

Source Num DF Den DF F value p-value
a 1 5 11.40 0.0198
b 1 10 15.81 0.0026

a × b 1 10 7.67 0.0198

Unexpectedly, all effects would be declared highly significant. 
This illustrates the problem with the naive Poisson model: it does 
not use information from the last line of the WWFD combined 
ANOVA and as a result shows symptoms of overdispersion. This 
is confirmed by an overdispersion diagnostic statistic available 
with PROC GLIMMIX when run using either Laplace or 
quadrature: the Pearson c2/df = 7.4. In theory, a model with no 
overdispersion will produce a Pearson c2/df of approximately 1. 
In practice, this statistic should not appreciably exceed 1. A value 
over 2 should be considered evidence of possible overdispersion; 
7.4 is decisive evidence.

An alternative diagnostic, available with R’s LME4 package as 
well as SAS GLIMMIX uses the Akaike information criterion 
(AIC) fit criterion. The naive Poisson model above yields an AIC of 
358 compared with the negative binomial model AIC of 178. The 
smaller AIC implies the better model; in this case, it is not subtle.

The negative binomial model yields the following results for the 
tests of treatment effects:

Source Num df Den df F value p value
a 1 5 8.59 0.0326
b 1 10 1.74 0.2168

a × b 1 10 0.77 0.4005

The results are distinctly more consistent with the mean plot in 
Fig. 3.

In the era between 1990 and 2005, good GLM software (e.g., 
SAS PROC GENMOD) was available, but good GLMM software 
had not yet appeared. During this interregnum, GEE was often 
used to analyze split-plot experiments with non-normal data. The 
“tradition” persists in certain disciplines associated with plant 
and soil science. Recall from the binomial Example 1 that the 
GEE replaces random effects in the linear predictor with working 
variance and correlation and replaces the distribution with a quasi-
likelihood. The GEE model for this example is
•	 quasi-likelihood of yijk: Poisson(lijk) quasi-likelihood with 

variance fWlijk and covariance fWrWÖ(l1jkl2jk) 
•	 link function: hijk = log(lijk) 
•	 linear predictor: hijk = h + ai + bj + (ab)ij + rk; because the 

GEE does not accommodate random effects, the block effect, 
rk, must be assumed to be fixed

The GEE yields the following treatment effect tests:

Source Num df Den df F value p value
a 1 5 13.77 0.0138
b 1 10 0.81 0.3888

a × b 1 10 0.39 0.5444

For this example, GEE leads to conclusions similar to those 
that follow from the negative binomial model. However, Stroup 
(2013b) found that the negative binomial GLMM yields 
robust performance in terms of Type I error control, power, and 
confidence interval coverage. In contrast, GEE models showed 
>15% power loss and erratic confidence interval coverage. 
Variations of Poisson-based GLMMs did no better, their worst 
problem being erratic Type I error control and downward-biased 
estimates of the mean.

To illustrate the confidence interval coverage issue, Table 7 
shows the estimates of the mean rates from the naive Poisson model 
shown above, the negative binomial GLMM, and GEE. These 
results are typical of what Stroup (2013b) found.

The sample means are marginal means, so they are shifted 
upward relative to the true mean count. This partly accounts for the 
poor coverage using standard ANOVA with untransformed data. 
The Poisson GLMM and GEE overcompensate, shifting estimates 
too far downward. Only the negative binomial model obtains 
consistently accurate estimates. Stroup (2013b) also obtained results 
for transformations–notably the logarithmic and square root–
commonly recommended for count data. Estimation accuracy was 
erratic and power loss was considerable (as high as 40%). As with 
binomial data, transformations in a mixed model setting not only 
do not help, they tend to make things worse.

Fig. 3. Plot of A ´ B treatment combination least squares (LS) means 
for count data.
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Example 3: repeated Measures, binomial Data
Repeated measures occur when observations are taken 

at planned times, e.g., at defined growth stages or at regular 
intervals during the growing season, on the same experimental 
unit. Repeated measures also occur in space, for example when 
measurements are taken at regularly spaced depths from a soil 
core sample. Whether in space or time, the defining modeling 
consideration is correlation among the measurements on the same 
experimental unit. Observations on the same experimental unit 
are not independent and their correlation depends on distance: 
adjacent observations tend to be more highly correlated than 
observations farther apart.

Much has been written on repeated measures analysis for 
normally distributed data. Readers are referred to Littell et al. 
(2006), Gbur et al. (2012), and Stroup (2013a) for comprehensive 
introductions to repeated measures LMMs. While basic LMM 
principles of modeling correlated data apply to non-normal 
data, these similarities may not be readily apparent. As with the 
other models considered here, non-normality introduces unique 
considerations that would not occur in a normal-data-only world. 
Gbur et al. (2012) and Stroup (2013a) covered this topic in detail. 
Here, the essentials and the bottom line are introduced.

The two primary modeling approaches are those that use 
a working correlation—similar to the GEE models shown in 
Examples 1 and 2—and those that embed a correlated unit-level 
effect in the linear predictor, similar to the binomial with linear 
predictor hij = h + ti + bj + uij from Example 1. The GEE approach 
dates from its introduction by Zeger et al. (1988). The GLM 
software introduced in the 1990s could implement GEEs. On the 
other hand, true repeated measures GLMMs could not be fully 
implemented until the 2008 release of SAS PROC GLIMMIX. At 
this time, there still is no equivalent capability in R. For this reason, 
the repeated measures GLMM, despite its advantages, is much 
less well known. As an aid to readers negotiating supplemental 
reading, Gbur et al. (2012), Stroup (2013a), and SAS GLIMMIX 
documentation refer to the GEE as R-side modeling and the true 
GLMM as G-side modeling.

This example has two treatments, generically labeled 0 and 1, 
and 10 experimental units (called plots) randomly assigned to each 
treatment in a completely randomized design. Measurements are 

taken on each experimental unit at five times. For example, the two 
treatments could be different management practices and the times 
could be 4, 8, 12, 16, and 20 wk after mowing. Table 8 shows the 
WWFD ANOVA for this design.

Superficially, the combined ANOVA looks like a split-plot 
ANOVA. Indeed, one frequently used model for agronomic 
repeated measures data is called the “split plot in time.” This model 
is equivalent to assuming compound symmetry—that is, all 
repeated measures are equally correlated regardless of how far apart 
they are in space or time. This is sometimes—but certainly not 
always—true of agronomic data. Failure to account for distance-
dependent correlation is a form of overdispersion, with the same 
consequences seen in the previous examples.

In this example, the data observed are binomial, with 50 yes–no 
observations per experimental unit per measurement occasion. The 
GLMM that follows from the WWFD combined ANOVA is
•	 linear predictor: hijk = h + ai + tk + (at)ik + r(a)ij + wijk, 

where a denotes treatment, t denotes time, r denotes plot, and 
w denotes within-plot measurement occasion

•	 random effect distributions: plot, r(a)ij, more commonly 
denoted bij (for “between subject” effect) ? NI(0,sB

2); the 
five within-subject effects on each plot, denoted [wij1 wij2 wij3 
wij4 wij5] are assumed to have a multivariate normal distribu-
tion, that is, each wijk has a normal distribution and each pair 
is correlated; the mean of each effect is 0, but the form of the 
correlation structure can vary (see below)

•	 response distribution: yijk|r(a)ij,wijk ? Binomial(N,pijk) where 
i references treatment, j references plot, k references time, and 
N = 50

•	 link function: hijk = logit(pijk) 
Gbur et al. (2012) and Stroup (2013a) presented common 

correlation structures, with Gbur et al. focusing on those 
most relevant to plant and soil science research. The structure 
that best fits these data, using the model selection procedure 
described below, is the first-order autoregressive [AR(1)] model 
with variance sW

2 and the correlation rd where d is the distance 
between two observations. For example, the distance between 
the first and second repeated measures, wij1 and wij2, is 1; the 
distance between the first and third, wij1 and wij3, is 2; and so 

Table 7. Estimated mean counts produced by different models.

A B Sample mean
Poisson generalized linear 

mixed model
Negative binomial generalized linear mixed 

model
Generalized estimating 

equation
1 1 3.3 2.7 3.2 2.4
1 2 8.8 7.1 8.6 6.5
2 1 21.0 14.2 19.1 15.4
2 2 25.0 16.9 23.3 18.3

Table 8. “What Would Fisher Do” ANOVA for repeated measures example.

Topographical Treatment Combined
Source df Source df Source df

Treatment 1 Treatment 1
Plots 19 Plots|treatment (between subjects) 19 – 1 = 18

Time 4 Time 4

Time  ´ treatment 4 Time ´ treatment 4

Measurement occasion (plot) 80 “Parallels” 90 Occasion (plot)|time
(within subjects)

80 – 8 = 72

Total 99 Total 99 Total 99
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forth. The correlation structure is most succinctly described in 
matrix form, which for the AR(1) is
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The diagonal elements give the variance. The off-diagonal elements 
give the correlation between times cross-referencing row and 
column; for example, the first row and third column gives the 
correlation between the first and third repeated measurement.

Analysis of the repeated measures GLMM begins by 
determining which of the plausible covariance structures best fits 
the data. Typically, this is done by computing fit criteria, e.g., the 
small-sample corrected Akaike information criterion (AICC). 
Do this by fitting each competing covariance structure in SAS 
GLIMMIX using the METHOD = LAPLACE option. At this 
time, this step must be done with SAS GLIMMIX because it 
is currently the only GLMM software that supports modeling 
G-side correlated effects. For these data, the AICC for the split-
plot-in-time model (i.e., assuming compound symmetry) is 646 
and for the AR(1) is 626. Smaller is better, meaning that there is 
non-negligible correlation that must be accounted for in subsequent 
analysis. While not shown here, in practice other covariance 
structures—in particular the first-order ante-dependence 
[ANTE(1)] model—should be considered. In my experience, the 
vast majority of data fit the split-plot-in-time, AR(1), or ANTE(1) 
structure. The unstructured model is similar to the multivariate 
analysis of variance (MANOVA), a procedure that was often used 
in pre-LMM days. With LMMs and GLMMs available, using 
MANOVA for repeated measures is extreme overkill, inefficient 
and underpowered. With non-normal data it is also prone to 
computational difficulties. The bottom line on unstructured 
covariance with non-normal data: needless effort prone to 
intractable computational problems, yielding inferior inferential 
statistics even on the occasions when such statistics can be obtained. 
Don’t bother.

Figure 4 shows the mean plot for these data.
The AR(1) GLMM tests for the treatment and time effects are

Source Num df Den df F value p value
trt 1 9 4.90 0.0542

time 4 57.99 2.82 0.0330
trt ×  time 4 57.98 1.74 0.1536

Notice the non-integer values of the denominator df. They, and 
the F and p values, reflect the procedure developed by Kenward 
and Roger (2009) to account for the effect of the covariance 
structure on degrees of freedom and standard errors. Although 
the Kenward–Roger adjustment was derived for the LMM with 
normally distributed data and is an ad hoc procedure for GLMMs 
with non-normal data, informal simulation studies consistently 
have suggested that the adjustment is accurate. The Kenward–
Roger adjustment requires that the SAS GLIMMIX default 
computing algorithm, pseudo-likelihood, be used rather than the 
Laplace algorithm used to obtain AICC statistics. Stroup (2013b) 
found that for binomial and Poisson GLMMs, pseudo-likelihood 
with the Kenward–Roger adjustment yields better Type I error 
control than Laplace while preserving the GLMM’s advantage with 
respect to power and accuracy in estimating treatment means.

While technically nonsignificant, the test of treatment ´ time 
interaction should not be ignored. In the first place, it is a multiple-
degrees-of-freedom test with a p value <0.20. Standard statistics 
methods textbooks advise investigating simple effects for such 
cases. Inspection of Fig. 4 suggests that treatment differences vary 
noticeably with time. There are many ways to address this. The 
most appropriate depend on the particulars of the research and its 
objectives. Two that are shown here are “slices” by treatment, testing 
whether there is a change in response with time on a treatment-by-
treatment basis, and simple-effect tests of treatment effect for each 
time. These are shown below, along with the results for the GEE, to 
allow a side-by-side comparison.

The primary alternative is GEE. The disadvantages of GEE are: 
(i) no comparison of covariance structures is possible (the AICC 
and related fit statistics are undefined for GEEs); and (ii) assuming 
the GLMM is properly specified, its power and treatment mean 
estimation accuracy are greater than those of GEE with no sacrifice 
in Type I error control. The advantage of GEE: theory suggests 
that it may be more robust to misspecified models, meaning that 
while it may never be exactly correct it may be more likely to be 
approximately correct than the GLMM.

For these data, the GEE model is
•	 linear predictor: hijk = h + ai + tk + (at)ik + r(a)ij, where a 

denotes treatment, t denotes time, and r denotes plot
•	 random effect distributions: none—the GEE is a strictly fixed-

effects model
•	 response distribution of yijk: Binomial(N,pijk) quasi-likelihood, 

where i references treatment, j references plot, k references time, 
and N = 50

•	 link function: hijk = logit(pijk) 
•	 working covariance:

( ) ( )Wworking Var 1ijk ijk ijky p p=f -

Fig. 4. Plot of sample proportions (inverse linked yes/no least squares 
[LS] mean) with time by treatment for Example 3.
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The terms fW and rWk,k¢ denote the working scale and 
correlation, respectively. The form of the working covariance can 
vary in the same manner as the covariance of unit-level effects does 
in GLMMs. For example, the AR(1) working covariance is
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The AR(1) GEE tests for the treatment and time effects are

Source Num df Den df F value p value
trt 1 14.63 7.69 0.0145

time 4 64.84 2.70 0.0382
trt ×  time 4 64.85 1.55 0.1985

Notice that the p value for the treatment ´ time effect is just 
under 0.20 for the GEE compared with just over 0.15 for the 

GLMM. This is where the power loss of the GEE tends to appear in 
repeated measures analyses.

Table 9 shows the estimated probabilities for the GLMM and 
GEE analyses. Tables 10 and 11 show simple effects—slices by 
treatment and treatment differences by time—from the GLMM 
and GEE analyses, respectively.

The most striking difference between the two analyses is the 
lack of difference. The probabilities and associated standard 
errors are close, with differences appearing mostly in the third 
decimal place. The GEE means show a slight shift toward 0.5, 
expected because they are estimates of the marginal mean, 
not true probability estimates. The slice and simple-effect 
results would lead to essentially identical conclusions: there is 
evidence of changes with time under Treatment 1 but not under 
Treatment 0 and there is evidence of treatment difference at 
Times 2 and 5. The one discrepancy appears at Treatment 4: 
the GEE shows a p value of 0.07 compared with 0.11 for the 
GLMM. Depending how rigidly a policy regarding a is imposed, 
this could create an issue. It shouldn’t, because the estimated odd 
ratios are nearly identical. This is an illustration of why journals 
would be well advised to tone down emphasis on p values and pay 
more attention to interval estimates.

SUMMArY AND CONCLUSIONS
This discussion has attempted to give plant and soil science 

researchers, and the statistical scientists with whom they 
collaborate, a sense of the issues and methods associated with 
contemporary analysis of non-normal data. To borrow a phrase 
from a recent advertising campaign, “This is not your father’s 

Table 9. Treatment mean estimates from generalized estimating equation (GEE) and generalized linear mixed model (GLMM) repeated measures analyses.

Observation Treatment Time P_hat_gee† se_P_gee‡ P_hat_glmm§ se_P _glmm¶
1 0 1 0.17921 0.030499 0.18006 0.035363
2 0 2 0.16141 0.029131 0.16314 0.032964
3 0 3 0.21293 0.032756 0.21098 0.039351
4 0 4 0.24162 0.034407 0.23686 0.042445
5 0 5 0.24175 0.034409 0.23800 0.042603
6 1 1 0.24021 0.034314 0.23380 0.042155
7 1 2 0.28705 0.036556 0.28741 0.047381
8 1 3 0.23047 0.033746 0.22583 0.041181
9 1 4 0.33693 0.038348 0.32785 0.051061

10 1 5 0.37100 0.039279 0.36654 0.053284
† P_hat_GEE denotes estimated ˆ

ijp  for each treatment–time combination from GEE.
‡ se_P_GEE denotes associated standard error.
§ P_hat_GLMM denotes estimated ˆ

ijp  for each treatment–time combination from GLMM.
¶ se_P_GLMM denotes associated standard error.

Table 10. Simple effect estimates from generalized linear mixed model (GLMM)-based repeated measures analysis.

Tests of effect slices for treatment ´ time  
Sliced by treatment (trt)

trt Numerator df Denominator df F value Pr > F
0 4 62.74 1.20 0.3186
1 4 53.17 3.40 0.0151

Simple effect level trt _trt Odds ratio p value
Time 1 0 1 0.720 0.2562
Time 2 0 1 0.483 0.0151
Time 3 0 1 0.917 0.7598
Time 4 0 1 0.636 0.1141
Time 5 0 1 0.540 0.0334
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statistical analysis.” If I have left the impression that the GLMMs 
have a steep learning curve, that is right. The question, then, is: 
given that modern researchers have a myriad of new concerns to 
deal with, is GLMM just another example of the statistical tail 
wagging the scientific research dog, or does the GLMM really 
matter despite the learning curve?

To answer this question, here are my take-home messages:
•	 Standard ANOVA on untransformed non-normal data 

depends on the Central Limit Theorem, which says that treat-
ment means have an approximate normal distribution if the 
sample size is large enough.

•	 In a world where four replications are typical and budgets are 
tight, large enough is problematic.

•	 Even if normality holds, homogeneity of variance does not, 
except in the usually uninteresting case of no difference among 
treatment means.

•	 As a consequence, standard ANOVA on untransformed non-
normal data suffers loss of power—often severe loss of power—
and inaccurate estimates of treatment means.

•	 Research budgets being what they are—and what they will 
probably be for the foreseeable future—lavishly replicated ex-
periments are not abundant in plant and soil science research. 
On the other hand, minimally replicated, often underpow-
ered experiments are common. It makes no sense to further 
handicap such experiments with the power loss associated with 
analysis using standard ANOVA.

•	 Transformations not only do not help, they are counterproduc-
tive. The theory underlying transformations was developed in 
a world where mixed models did not exist. There is mounting 
evidence that transformations do more harm than good for the 
models required by the vast majority of contemporary plant 
and soil science research. This includes designs with any kind 
of blocking, from simple RCBDs through split-plot, repeated 
measures, and certainly any more complex designs. Reviewers 
need to cease and desist from suggesting transformations for 
non-normal data.

•	 Some suggest using non-parametric statistics. While non-para-
metric statistics do not assume normality, they are focused only 
on testing, not on estimation. In most plant and soil science 
research, the question is not, “Is there a treatment difference?” 
Instead, it is, “We know there is a difference. How big is it?” 
Non-parametric statistics are useless for the latter.

•	 Generalized linear mixed models provide statistically sound 
ways to address these issues. Small-sample investigations are 
providing an increasing body of evidence that GLMMs work 

as well in practice as they do in theory. The difference between 
now and before 2005 is that while the theory was incubating 
before 2005, texts to provide guidance and good, useable soft-
ware did not exist, whereas now both are readily available.

In other words, for non-normal data, ANOVA, with or without 
transformed data, won’t do. The loss of accuracy and power are too 
great. Given the current state of the art and the resources available 
to plant and soil science researchers, GLMMs and, in certain cases, 
GEEs are the methods of choice.

Admittedly, the learning curve is steep. Admittedly, a poorly 
chosen GLMM, or even a well-chosen but ineptly implemented 
GLMM, may be worse than standard ANOVA. Data analysts 
must pay attention to issues such as marginal vs. conditional 
models and inference, GEE vs. pseudo-likelihood vs. Laplace vs. 
quadrature, choices among distributions and particulars about 
those distributions for given types of response variables—topics 
that never occurred in traditional ANOVA and regression.

However, contemporary statistical practice, and eventually 
contemporary statistical training for future researchers, must adjust. 
Standard statistical practice as it was understood for most of the 
20th century was a dramatic advance. But it was also a product of 
its times—the 1920s through 1940s—when the “computer” was 
a pencil and paper or at best a mechanical calculator and GLMM 
theory was 50 yr in the future. Nothing in science can remain 
frozen in time.

In the novel Arrowsmith, by Sinclair Lewis (1925), winner of 
the 1926 Pulitzer Prize, the protagonist, Martin Arrowsmith, 
is an up-and-coming medical researcher. While his primary 
loves are biology and biochemistry, his mentor, Max Gottlieb, 
implores his protégé to master the mathematics, even when the 
effort seems beyond him. Responsible, high-quality research, 
Gottlieb tells his student, is not possible unless it is quantitatively 
rigorous. While we may prefer Lewis to have refined Max 
Gottlieb’s word choice, replacing “mathematics” with “statistics,” 
his advice to the young Arrowsmith rings as true today as it did 
when the novel was written in 1925.
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